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1 Introduction

Object recognition is a central problem in computer vision, and model-based meth-
ods constitute one prevalent approach to this problem. In the model-based ap-
proach, a set of geometric features that constitute a model of an object are compared
against like features that have been extracted from an image of a scene (cf. [3, 7]).
The process of comparing a model with an image generally involves determining a
valid correspondence between a subset of the model features and a subset of the
features found in the image. In order for such a correspondence to be valid, it is
usually required that there exist some transformation of a given type mapping each
model feature onto its corresponding image feature. This transformation generally
specifies the pose of the object - its position and orientation with respect to the
image coordinate system. The quality of a given hypothesized transformation is
then evaluated based on the number of model features that are brought into corre-
spondence with image features. Thus the task of model-based recognition can be
viewed as finding legal transformations from a model to an image, and then de-
termining whether one or more of these transformations accounts for a sufficiently
large portion of the model and the observed data.

A number of recent model-based recognition systems have used affine transfor-
mations of the plane to represent the mapping from a two-dimensional model to
a two-dimensional image (e.g. [4, 5, 12, 13, 16, 17, 18, 19, 21, 22]). This type
of transformation can be used to approximate the two-dimensional image of a flat
(planar) object at an arbitrary orientation in three-dimensional space. The trans-
foi:- .tion is equivalent to a three-dimensional rigid motion of the object, followed
by orthographic projection and scaling (dilation). The scale factor accounts for the
fact that objects which are farther away appear smaller than those which are close.
This affine viewing model does not capture the perspective distortions that occur
in real camera systems, because affine transformations preserve parallelism. It is a
relatively good approximation to perspective except when an object is deep with
respect to its distance from the viewer (e.g., railroad tracks going off to the horizon).

Recognition systems that make use of two-dimensional affine transformations
fall into two basic classes. Methods in the first class explicitly compute an affine
transformation based on the correspondence of a set of 'basis features' in the image
and the model. This transformation is applied to the remaining model features
in order to map them into the image coordinate frame, where they are compared
with image features [2, 12, 13, 21]. Methods in the second class compute affine
invariant representations of the model and the image, and directly compare these
invariant representations [4, 5, 16, 17, 18, 19, 22]. In either case, recognition systems For
that employ affine transformations generally do not explicitly account for sensory
uncertainty, but rather use some heuristic means to allow for uncertainty in the 0
location of sensory data (one notable exception is [4] who formulate a probabilistic -1
method). In this paper we provide a precise account of how uncertainty in the image o.
measurements affects the range of transformations that are consistent with a given
configuration of points acting under an affine transformation. This is important
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both for analyzing current recognition methods that employ affine transformations,
and for developing new recognition methods that explicitly account for uncertainty.

We use our formal model of approximate affine matching to analyze two recog-
nition methods that employ affine transformations: the geometric hashing method
(16, 17, 18, 19, 22] and the alignment method [12, 13]. Under our model each sensor
location is represented as an uncertainty disc of radius c, rather than as a specific
(x,y) location. For the alignment method, we use this model to provide a precise
expression for the range of image point configurations that are consistent with a
given quadruple of model points acting under an affine transformation. That is,
we characterize what image points can match a given model point for a particular
model and image basis (coordinate frame). This determines the range of possible
matches for features, and hence the range of possible solutions to the recognition
problem. For the geometric hashing method, we provide a similar analysis for the
range of affine-invariant coordinates that are consistent with a given quadruple of
points. This analysis reveals that when there is uncertainty in the data, the geo-
metric hashing method cannot operate as originally proposed. The problem is that
the uncertainty in the image point locations causes the range of values consistent
with a given quadruple of model points to depend on the specific locations of the
image points. The geometric hashing method proposes to build a fast lookup table
based just on the model, and thus cannot account for the uncertainty using this ta-
ble. We show how geometric hashing can be modified so that error can be precisely
accounted for at run time, although this substantially changes the method.

1.1 Affine Transformations and Invariant Representations

An affine transformation of the plane can be represented as a nonsingular 2 x 2
matrix L, and a 2-vector, t, such that a given point x is transformed to x' =
Lx + t. It is well known that such a transformation maps any triple of points
to any other triple (expect in degenerate cases), and that three points define an
affine coordinate frame (analogous to a Cartesian coordinate frame in the case of
Euclidean transformations) [6, 14]. In particular, a set of three points inl, Mn2 , and
M 3 defines an affine coordinate frame in terms of which any other point x can be
expressed using

x = mI + a(m 2 -m) + 3(m 3 - m). (1)

The values a and 3 remain unchanged when a given affine transformation A is
applied to x, MI, m2, and Mn3. That is,

A(x) = A(mi) + a(A(m 2 ) - A(mi)) +,3(A(m 3 ) - A(mn)),

where A is any affine transformation. Thus the pair (a,3) car. be referred to as the
affine-invariant coordinates of the point x with respect to the coordinate frame, or
basis, (MI,rn2 ,iM3 ). We can think of (a,/3) as a point in a two-dimensional space
that we term the a-f-plane.

2



The computation of an affine-invariant representation in terms of a coordinate
frame (ml, m2, m3) has been used explicitly in the alignment [12, 13] and geometric
hashing [16, 17, 18, 19, 22] methods. Both methods are motivated by the idea of
finding sets of points in the image that are related to a corresponding set of points
in the model by an affine transformation. The major difference between the two
methods is in terms of whether the computations are done in a Euclidean space
(i.e., the Cartesian coordinate systems of the model and the image) or the affine-
invariant space of the (a,3) values. The alignment approach operates in the former
domain, whereas the geometric hashing approach operates in the latter one.

We examine the effect of sensory uncertainty both in the Euclidean plane and
the affine a-/3-space. In particular, we model each sensor point in terms of a disc of
possible locations. The size of this disc is bounded by some given uncertainty factor,
c. We then consider the range of values for a fourth point written in terms of the
basis defined by the other three points, where all points have bounded uncertainty.
We find that under this error model, in the Euclidean space the set of possible
values for a given point x in terms of a basis (sI,s 2,s 3 ) forms a disc whose radius
depends on c, a, and •3. That is, assuming that each image point has a sensing
uncertainty of magnitude E, the range of image locations that are consistent with x
forms a circular region.

In the a-0-space, the set of possible values of the affine coordinates of a point x
in terms of a basis (sI, s2, s 3) forms an ellipse (except in degenerate cases). The area,
center and orientation of this ellipse are given by somewhat complicated expressions
that depend on the actual configuration of the basis points. The most important
consequence of this analysis is that the set of possible values in the a-0-plane cannot
be computed independent of the actual locations of the basis points sl, s2, s3 , in
the sensor coordinate system. In other words there is an interaction between the
uncertainty in the sensor values and the actual locations of the sensor points. This
limits the applicability of the geometric hashing method, as it requires that the a-,3
coordinates be computable independent of the actual location of the basis points
(in order to construct a hash table offline).

Having derived expressions for the range of locations consistent with a given
point x and a pair of bases (mI,m 2 , m 3) and (sI,s 2,s 3 ), we then use these expres-
sions to analyze the sensitivity of the alignment and geometric hashing methods
to the presence of sensor noise. We develop equations giving the probability that
these methods will falsely report a match when none is present, using techniques
similar to those developed in [9, 10]. For the geometric hashing method, our anal-
ysis assumes that the true elliptical regions in the a-,3-plane are being computed -
even though the actual implementations of the geometric hashing method do not
compute these values. Thus the real implementations will suffer even more from the
problem of false matches (or alternatively will have the problem of missing correct
matches).

3



TRANSFORM: MODEL BASIS

TO IMAGE BASIS

MODEL POINTS IMAGE POINTS

AND BASIS AND BASIS

MODEL IMAGE
POINTS POINTS

WRT BASIS a-B SPACE WRT BASIS

Figure 1: A schematization of the relation between the image coordinate frame, the
model coordinate frame and the affine-invariant a-D3-space.

2 Image Uncertainty and Affine Coordinates

The main issue we wish to explore is the following: Given a model basis of three
points and some additional model point, what sets of four image features are pos-
sible transformed instances of these points? In other words, for what quadruples
of image points is there an affine transformation defined by pairing three of the
image points with the three model basis points, such that the fourth model point
is transformed intco agreement with the fourth image point. Figure 1 schematizes
the situation. k set of model points are given in a Cartesian coordinate frame, and
some distinguished basis triple is also specified. Similarly a set of image points are
given in their coordinate frame. Two different methods are used to map between the
model and the image. One method, employed by geometric hashing, is to map both
the model and the image points to (a, /3) values using the basis triples. The other
method, used by alignment, is to compute the transformation mapping the model
basis to the image basis, and then use this transformation to map the model points
to image coordinates. In both cases, a distinguished set of three model and image
points is used to map a fourth point (or many such points) into some other space.
We consider the effects that uncertainty has on these two methods, by modeling
each image point as an E-sized disc of possible locations rather than as a specific
point.

First we characterize the range of image measurements in the x-y (Euclidean)
plane that are consistent with the (a,/3) pair computed for a given quadruple of
model points, as specified by equation (1). This corresponds to the case of explicitly
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computing a transformation from one Cartesian coordinate frame (the model) to
another (the image). We find that if the uncertainty in the locations of the sensor
points is bounded by a disc of radius c, then the range of possible image measures
consistent with a given (a,,3) pair is a disc with radius bounded below by E(1 +
jal + 101) and above by 2E(1 + lal + 1/31). This defines the set of image points that
could match a specific model point, given both an image and model basis.

We then perform the same analysis for the range of affine coordinate, or a and
/,3, values that are consistent with a given quadruple of points. This corresponds to
the case of mapping both the model and image points to (a, 3) values. In order to
do this, we use the expressions that we derived for the Euclidean case to determine
the region of a-/O-space that is consistent with a given point and basis. This region
of a-/0-space is in general an ellipse containing the point (a,/3) (but not necessarily
centered at that point). The expressions for the size, orientation and position of
the ellipse depend on the actual locations of the points defining the basis.

Assume that we are given three model points, M1 , M 2 , M 3 , and the affine coor-
dinates (a, /3) of a fourth model point x defined by

x = MI + a(M2 - MI) +,3(M3 - ml). (2)

Further assume that we are given three sensor points s1 , S2 , s 3, such that

si = T(mi) + ej,

where T is some affine transformation, and ei is an arbitrary vector of magnitude at
most El. That is, T is some underlying affine transformation that cannot be directly
observed in the data because each data point has been perturbed by some arbitrary
vector ei. These error vectors ei are assumed to be bounded by Ei, using our error
model that represents a point as a disc of radius ci. (Note that in general we will
always use ci = 4E, but in principle one could allow different amounts of bounded
uncertainty with different features.)

We are interested in the possible locations of a fourth sensor point, call it i,
such that : could correspond to the ideally transformed point T(x). We note that
the possible positions of x are affected both by the sensor error in measuring each
image basis point, si, and by the error in measuring the fourth point itself. Thus the
possible locations are given by transforming the invariant representation of equation
(2) and adding in the error eo from measuring x,

S= T (m,+a(i 2 -mI)+/3(m 3 -iml))+eo
= t -el + a(s 2 -e 2 -s +el)+,3(s3-e 3 -sl +el)+eo

= S1 + a(s 2 - sO) + /(s 3 - Si) - el + a(el - e 2 ) + O(e1 - e3) + eo.

That is, the measured point * can lie in a range of locations about the ideal
location, specified by

S1 + a(s 2 - s1 ) + O(s 3 - sl).

.5



This range of possible locations is specified by the linear combination of the four
error vectors

-el + a(el - e2 ) + /(el - e 3 ) + e0 ,

or equivalently
- [(1 - a -/3)ej + ae 2 +/3e3 - e0], (3)

where each ei is an arbitrary vector of length at most Ei.

The set of all possible locations specified by a given ei is a disc of radius Ei about
the origin, which we denote C(E1 ):

c(q•) = lei I Ieill _< c,}.

Similarly, the product of any constant k with ei yields a disc C(kfi) of radius IkIl,
centered about the origin. Thus substituting the expressions for the disc in equation
(3) we obtain the following expression for the set of all locations about the ideal
point Si + a(s2 - Si) + O(s3 - SO):

C([1 - a -
3 ]q) • C(aC2 ) E C(/3e3 ) E C(CO), (4)

where D denotes the Minkowski sum of sets. That is, given two sets A and B,
A E B = {p + qlp E A, q E B} (and similarly for e).

In order to simplify the expression for the range of * we make use of the following
fact, which follows directly from the definition of the Minkowski sum for sets.

Claim 1 C(ri) E C(r2) = C(ri) E C(r2 ) = C(r1 + r2), where C(ri) is a disc of
radius ri centered about the origin, ri > 0.

If we assume that the ci are all equal to E (i.e., all the sensor error bounds are
the same), then using Claim 1 we can simplify equation (4) to

C (c[ll - a - i1 + Jal + 1/•1 + 1]).

The absolute values arise from the fact that a and / can become negative, but the
radius of a disc is a positive quantity. Clearly the radius of the error disc grows with
increasing magnitude of a and /, but the actual expression governing this growth is
different for different portions of the a -/3-plane, as shown in Figure 2 (the diagonal
line in the figure is 1 - a - /3 = 0). In particular, the absolute values will lead to
different expressions for the radius of the error disc as a function of a and /3, as
illustrated in the figure.

We can bound the expressions defining the radius of the uncertainty disc by
noting that

1 + Ja1 + 1/•1 _ (I1 - a - /31 + IJa + 1/31 + 1) <_ 2(1 + lal + 1/31).

We have thus established the following result:

6
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Figure 2:
Diagram of error effects. The region of feasible points is a disc, whose radius is given by the

indicated expression, depending on the values of a and 6.
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Figure 3:
Diagram of error effects. A set of four model points are shown on the left. The positions of four
image points are shown on the right, three of which are used to establish a basis. The actual
position of each transfcrmed model point corresponding to the basis image points is offset by an
error vector of bounded magnitude. The coordinates of the fourth point, written in terms of the
basis vectors, can thus vary from the ideal case, shown in solid lines, to cases such as that shown
in dashed lines. This leads to a disc of variable size in which the corresponding fourth model point

could lie.

Proposition 1 The range of image locations that is consistent with a given pair of

affine coordinates (a,/) is a disc of radius r, where

c(1 + Jai + 131) • r < 2(1 + ai+ 131)

and where c is a positive constant that bounds the positional uncertainty of the image
data.

The effect of this circular uncertainty region for the location of R is illustrated in
Figure 3. The positional uncertainty in the locations of the three image basis points
results in a circle of possible locations for the fourth point. The error in measuring
the fourth point itself increases the radius of this error disc.

The expression in Proposition 1 allows the calculation of error bounds for any
method based on two-dimensional affine transformations, such as [2, 12, 21]. 11
particular, if jai and I1,3 are both less than 1, then the error in the position of a
point is at most 6c. This condition can be met by using as the affine basis, three
points MI, m 2 and m 3 that lie on the convex hull of the set of model points, and
are maximally separated from one another.

It should be noted that the expression in Proposition 1 is independent of the
actual locations of the model or image points. This means that the possible positions
of the fourth point vary only with the sensor error and the values of a and 3. They
do not vary with the configuration of the model basis (e.g., even if close to collinear)
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nor do they vary with the configuration of the image basis. In other words, the error
range does not depend on the viewing direction. Even if the model is viewed end on,
so that all three model points appear nearly co-linear, or if the model is viewed at a
small scale, so that all three model points are close together, the size of the region
of possible locations of the fourth model point in the image will remain unchanged.

The viewing direction does, however, greatly affect the affine coordinate system
defined by the three projected model points. Thus the set of possible affine coordi-
nates of the fourth point, when considered directly in a-0-space, will vary greatly.
Our next goal is to characterize this set of affine coordinates. This can be done
by making use of Proposition 1, which tells us the set of image locations consistent
with a fourth point. Implicit in this analysis is the set of affine transformations
that produce possible fourth image point locations. This can in turn be used to
characterize the range of (a,/3) values that are consistent wit- a given set of four
points.

We will do the analysis using the upper bound on the radius of the error disc from
Proposition 1. In actuality, the analysis is slightly more complicated, because the
expression governing the disc radius varies as shown in Figure 2. For our purposes,
however, considering the extreme case is sufficient. It should also be noted from the
figure that the extreme case is in fact quite close to the actual value over much of
the range of a and /3.

Given a triple of image points that form a basis, and a fourth image point, s4 ,
we are interested in determining the range of affine coordinates for the fourth point
that are consistent with the possibly erroneous image measurements. In effect,
each sensor point si takes on a range of possible values, and each quadruple of
such values produces a possibly distinct value using equation (1). As illustrated
in Figure 4 we could determine all the feasible values by varying the basis vectors
over the uncertainty discs associated with their endpoints, finding the set of (a', /3')
values such that the resulting point in this affine basis lies within c of the original
point. By our previous results, however, it is equivalent to find affine coordinates
(a',/3') such the Euclidean distance from

S1 + a'(S 2 - s1) + /3'(S3 - S1)

to
S1 + a(S 2 - S1) + /(S3 - S 1 )

is bounded abive by 2c(1 + Ia'I + I/3'1).
The boundary of the region of such points (a',o') is defined by requiring the

distance from the nominal image point

S4 = s 1 + C(s 2 - sO) + /(s3 - S1)

to be 2c(l + It 'I + I/0'1), which is when

[2c(1 + Ia', + 1/311)]2 = [(a - a0)u]2 + 2(0I - /3')(a - a')vu cos 6 + [(/3 - I1)t,]2 (5)

9
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Figure 4:

offset from the origin point by the sum of a times the first basis vector u plus 6 times the second

basis vector v. The example on the right shows a second consistept set of affine coordinates. By

taking other vectors that lie within the uncertainty regions of each of the image points, we can find

a different set of atfine coordinates 
or, 3' such that the new fourth point based on these coordinates

also lies within the uncertainty bound of the image point.
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where

U = S2 - S1

V = S3 - S1

U = Hlull

V = IvII

and where the angle made by the image basis vectors s 2 - s1 and S3 - S1 is 0.

Considered as an implicit function of a',L3', equation (5) defines a conic. If we
expand out equation (5), we get

a, (a') 2 + 2a 12 a'/3' + a 22 (,3')2 + 2a 1 3 a' + 2a 23/3' + a 33 - 0 (6)

where

all = u2 - 4C2

a 2 2 = v 2 - 4( 2

a 12 = vu Cos 0 - 4s•,s,0
2

a 1 3 = -- U [CU + OV COS 0] - 4se 2

a 23 = -v [au cos p + )3v] - 4sE 2

a3 3 = a 2u 2 + 2a/3uv cos4 + /32 v2 - 4E2

and where

1 if a' > 0,
= {=-1 ifa'<0,

1 if '3' > 0,
-1 if 0' < 0.

For notational simplicity in what follows, it is convenient to assume that a and
0 are positive, so that s, = 1,so = 1.

We can use this form to compute the invariant characteristics of a conic [15]:

I = u2 + v2 - 8E2  (7)

D = u 2v 2 sin 2 2 - 4E2 (u2 - 2uvsas,• cos 0 + v2 ) (8)
A = --4�E 2 u2 v2 ~, 2 'n (1 + sýoC + s)/3)2 (9)

If u 2 + v 2 > 84E2 , then -7 < 0. Furthermore, if

u2v2 sin 2 2 > 4C2 (u2 - 2uvsas,6cos + v2)

then D > 0 and the conic defined by equation (5) is an ellipse. We will ignore the
degenerate cases in which the conic is not an ellipse. Such cases only occur either
when the image basis points are very close together, or when the image basis points

11



are nearly collinear. For instance, as long as the image basis vectors u and v are
each at least 2e in length then u2 + v2 > 8W2 . Similarly, as long as sin € is not small,
D > 0. In fact, cases where these conditions do not hold will be very unstable and
thus should be avoided anyway.

Given the conic invariants, we can compute a number of characteristics of the
ellipse. The area of the ellipse is given by

4•re2u2V2 sin2 0(1 + s8a + 800i)2

[u2v2 sin. , - 4C2 (u 2 - 2uvssp cos 0 + v2)1" (10)

The center of the ellipse is at

= D [aU2,9sinU2 - 4s2(aU2 
-S"(1 + s503)v 2 + uv cos(fO + sO(1- Sc)))]

0= D [iu~v[sin2 ¢42 2 2 (/3v2 _ sO(1 + saa)u2 + uv cos 0(a + s8(1 - soo)))]
(11)

The angle of the principal axes, 4ý, with respect to the a axis is

tan 2N = 2[uv cos € - 4e2 s5s(]
u2 v2(12)

Thus we have established the following:

Proposition 2 Given bounded errors of c in the measurement of the image points,
the region of uncertainty associated with a pair of affine coordinates (a, ,3) in a-0-
space is an ellipse. The area of this ellipse is given by equation (10), the center is
at (ao,,3o) as given by equation (11), and the orientation is given by equation (12).

In other words, given a set of four points whose locations are only known to
within discs of radius E, there is an ellipse-shaped region of possible (a,,3) values
specifying the location of one point with respect to the other three. Thus if we
compare (a, 3) values generated by some model of an object with those specified by
an image, when there is c-uncertainty in the image data, each image datum actually
specifies an ellipse of (a, 3) values. The area of this ellipse depends on the degree of
sensor uncertainty, c, the values of a and 3, and the configuration of the three image
points that form the basis. In order to compare the model values with image values
it is necessary to check that the affine-invariant coordinates for each model point
lie within the elliptical region of possible affine-invariant values associated with the
corresponding image point.

The fact that the regions of consistent parameters in a-0-space are ellipses causes
some difficulties for discrete hashing schemes, such as the one employed by geometric
hashing. This is discussed in greater detail in a later section, but the basic idea of
the geometric hashing method is to compute affine coordinates of model points with
respect to some choice of basis, and to use these affine coordinates as the hash keys
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to store the basis in a table. In general, the implementations of this method use
square buckets to tessellate the hash space (the a-13-space). In this case, we see that
even if we chose buckets whose size is commensurate with the ellipse, several such
buckets are likely to intersect any given ellipse due to the difference in shape of the
two regions. Thus, it is necessary to hash to multiple buckets, and this increases the
probability that a random pairing of model and image bases will receive a significant
number of votes.

A further problem for discrete hashing schemes is the fact that the size of the
ellipse increases as a function of (1 + lal + 101)2. Thus points with larger affine coor-
dinates give rise to larger ellipses than those with smaller coordinates. The contours
along which the centers of equal-sized ellipses lie are parabolic arcs (i.e. contours of
constant 1 + lal + I131), rather than circles. Either one must hash a given value to
many buckets, or one must account for this effect by sampling the space in a manner
that varies with parabolic distance, but this would require some careful analysis.

The most critical issue for discrete hashing schemes is the fact that the shape,
orientation and position of the ellipse depends on the specific image basis chosen.
That is, the orientation of the ellipse changes as u, v and 0 change (which are
parameters computed from the image basis). This means that there is no clear
way to fill the hash table as a pre-processing step, independent of a given image,
which is a crucial part of the geometric hashing method. The problem is that the
error ellipse associated with a given (a, 13) pair depends on the characteristics of the
image basis, and we don't know that ahead of time. There is no way to pre-compute
these error regions because they depend inherently on the image point configuration.
This means it is either necessary to approximate the ellipses by assuming bounds
on the possible image basis, which will allow both false positive and false negative
hits in the hash table, or to compute the ellipse to access at run time. Note that
the geometric hashing method does not address any of these issues. It is simply
assumed that some 'appropriate' tessellation of the image space exists.

In summary, in this section we have characterized the range of image coordinates
and the range of (a,1) values that are consistent with a given point, with respect
to some basis, when there is uncertainty in the image data. In the following section
we analyze what fraction of all possible points (in some bounded image region) are
consistent with a given range of (a,1) values. Then in the subsequent sections
we use this to derive expressions for the probability of a false match for both the
geometric hashing method and the alignment method.

3 The Selectivity of Affine-Invariant Representations

We are interested in determining the probability than an object recognition system
will erroneously report an instance of an object in an image. Recall that such an
instance in general is specified by giving a transformation from model coordinates
to image coordinates, and a measure of 'quality' based on the number of model
features that are paired with image features under this transformation. Thus we
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are interested in whether a random association of model and image features can
occur in sufficient number to masquerade as a correct solution. We use the results
developed above in order to determine the probability of such a false match. There
are two stages to this analysis; the first is a statistical analysis that is independent
of the given recognition method, and the second is a combinatorial analysis that
depends on the particular recognition method. In this section we examine the first
stage, and then in subsequent sections we turn to the analysis of the geometric
hashing and alignment methods.

In order to determine the probability that a match will be falsely reported we
need to know the 'selectivity' of a quadruple of model points. Recall from Figure 1
that each model point is mapped to a point a-/3-space with respect to a particular
model basis (triple). Similarly each image point, modeled as a disc, is mapped to
an elliptical region of possible points in a-0-space. Each such image region that
contains one or more model points specifies an image point that is consistent with
the given model. Thus we need to estimate the probability that a given image basis
and fourth image point chosen at random will map to a region of a-j3-space that
is consistent with one of the model points written in terms of some model basis.
One way of characterizing this is in terms of the proportion of the a-/3-space that
is consistent with a given basis and fourth point (where the size of the space is
bounded in some way). As was shown above, the elliptical regions in a-/3-space axe
equivalent to circular regions in image space. Thus, for ease of analysis we choose
to work with the formulation in terms of circles in image space.

To determine the selectivity, we assume we are given some image basis and a
potential corresponding model basis. Each of the remaining m, - 3 model points
are defined as affine coordinates relative to the model basis. These can then be
transformed into the image domain, by using the same affine coordinates, with
respect to the image basis. Because of the uncertainty of the image points, there
is an uncertainty in the associated affine transformation. This manifests itself as
a range of possible positions for the model points, as they are transformed into
the image. Previously we determined that a transformed model point had to be
within 2c(1 + jal + 1/31) of an image point in order to match it. That calculation
took into account error in the matched image point as well as the basis image
points. Therefore, placing an appropriately sized disc about each model point is
equivalent to placing an f sized disc about each image point. We thus represent each
transformed model point as giving rise to a disc of some radius, positioned relative
to the nominal position of the model point with respect to the image basis. For
convenience, we use the upper bound on the size of the radius, 2C(1 + IaI + 1/31). For
each model point, rewritten in image coordinates, we need to know the probability
that at least one image point lies in the associated error disc about the transformed
model point, because if this happens it means that there is a consistent model and
image point for the given model and image basis. To estimate this probability,
we need to estimate the expected size of the disc. Since the disc size varies with
Ial + 1/31, this means we need an estimate of the distribution of points with respect
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Figure 5:

Histogram of distribution of Ija + 101 values. Vertical axis is ratio of number of samples to total
samples, horizontal axis is value for alI + 1,61. The maximum over 300,000 samples was 51. Only
the first portion of the graph is displayed.

to affine coordinates. In fact, by Figure 2 we should find the distribution of points
as a function of (a,/3) since the disc sizes varies with these values. This is messy,
and thus we use an approximation instead.

For this approximation, we measure the distribution with respect to p, where
p = jal + 1,31, since both the upper and lower bounds on the disc size are functions
of this variable. Intuitively we expect the distribution to vary inversely with p. To
verify this, we ran the following experiment. A set of 25 points were generated at
random, with the property that their pairwise minimum separation was at least 25
pixels, and their pairwise maximum separation was at most 250 pixels. All possible
bases were selected, and for each basis for which the angle between the axes was
at least 7r/16, all the other model points were rewritten in terms of affine invariant
coordinates (a,/3). This gave roughly 300,000 samples, which we histogrammed
with respect to p(a,/3) = Ial + 101. We found that the maximum value for p in
this case was roughly 51. In general, however, almost all of the values were much
smaller, and indeed, the distribution showed a strong inverse drop off, as can be
seen from Figure (5).

Given this evidence, we considered two different models for the distribution of
points in affine coordinates. The first is:

(a,3) ={kp p_<l
= k (13)

Figure (6) illustrates the fit of this to the actual data. The second is:

kp p 1
p>(a,3) k P 1 . (14)

Figure (7) illustrates the fit of this to the actual data.
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We choose to use the first model, because it underestimates the probability for
large values of p, at the cost of overestimating it for small values of p. Since we are
interested in finding the expected size of the error disc, and this grows with p such
an approximation will underestimate the size of the disc.

First, we integrate equation (13) over all possible values and normalize to 1 in
order to deduce the constant:

k 3 2 (15)
Pm

where Pm is the maximum value for p (and p = jal + 1/01).
Next, we want to find the expected area of a disc in image space. Recall that

we are going to examine the upper bound on the disc size, so that in principle, this
area is just

41rE2 (1 + p) 2 .

We could simply integrate this with respect to the distribution from equation (13)J P
I m41rE

2 (1 + P)2 b(p)dp.

This, however, ignores the fact that the image is of finite size (say each dimension
is 2r), and some of the disc may lie beyond the bounds of the image. We therefore
separate out four different cases.

The first case is for p < 1. Here we get

A, = I 4•rE 2 (1 + p)2 kpdp = 47rE2k17 (16)
1P=0 12"

The second case considers discs that will lie entirely within the bounds of the im-
age. Consider figure 8, which shows the limiting case, assuming that the coordinate
frame of the basis is centered at the center of the image, and the image dimensions
are 2r by 2r. In this case, we have

r-pŽ -_y

where y = 2c(1 + p). In general, we have p :_ pd where d is the separation between
two of the basis points in the image, and this leads to the condition that if 1 < p _< c,
where =cl = min r" ' 2cd

then the discs will all lie entirely within the image. Thus the second case is

A2 = 4rc2(l + p)'kp-' do
P=1

= 47rc 2 k cl+2logcl -

= 47rfk2log 2)+ + r2-d 2_4(r+d). (17)
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Figure 8:
Case 2. Limiting case of an error disc lying entirely within the image, assuming the coordinate

basis is center in the image.
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Figure 9:
Case 3. Example of case in which the image error disc does not lie entirely within the bounds of

the image.
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Figure 10:
Case 3. Underestimate of the area of the image error disc.

The final expansion is based on the assumption that pm > cl, which is true for
virtually all cases of interest.

In the third case, when Pm > cl, for values of p > cl there is some truncation
of the disc. This situation is shown in figure 9. In this case the area of the portion
of the disc lying inside the image is given by

2 [7r -COS- (r -, P) 1 + (r- p) [Y2 - (r _p)212. (18)

Integrating this with respect to the distribution 6(p) is messy. Because we
are interested in underestimating the expected area of the discs, we can use the
following approximation. For values of p ranging from c, to c2, where c2 is the
value for which pd reaches the edge of the image, we can underestimate the area

of the disc contained within the image, by using the faceted approximation shown
in Figure 10. The actual expression for the area in the third case, A3 , is relatively
complex, and is given in Appendix A.

The final case occurs when the actual point is beyond the limits of the image,
but the disc size is large enough that some portion of it intersects the image. The
case is shown in Figure 11, as well as the approximation we use to underestimate
the area. Again the expression is complex, and is given in Appendix A.

Depending on the specific values for pmo, cl and c 2 we can add in the appropriate
contributions from equations 16, 17, 32 and 34, together with the value for k (from
equation (15)) to obtain an underestimate for the expected area of an error disc

- the expected area of a circle in image space that will be consistent with a point
expressed in terms of some affine basis. Since such discs can in general occur with
equal probability anywhere in the image, the probability that a model point lies
within a disc associated with an image point is simply the ratio of this area to the
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Figure 11:
Case 4. Underestimate of the area of the image error disc.

area of the image. Thus by normalizing these equations, by dividing by (2r) 2, where
r is half the diameter of the image, we have an underestimate for the selectivity of
the scheme.

This leads to the following estimate for the selectivity of the scheme:

Proposition 3 Given a model basis and a fourth model point, the probability that
an image basis and a fourth image point, hypothesized to correspond to the model
basis and point, will map at random to a region of a-fl-space consistent with the
model point and basis is given by

Al + A2 + A3 + A4
4r 2  (19)

where the Ai 's are given by equations 16, 17, 32, and 34.

This is based on using the upper bound on the radius of the error discs. As
noted earlier, a simple lower bound can be obtained by substituting C/2 in place of
c, reflecting the use of the bound c(1 + p) in place of 2c(1 + p). In this case, the
bounds cl and c2 will change slightly.

We can use this to compute example values for the selectivity, which depends
on pm. (the maximum value of IaI + 1,1). If we allow any possible triple of points
to form a basis, then P, can be arbitrarily large. Consider the example shown in
Figure (12). The value for p associated with the point p is given by

p
uvi sin ul sin 01 + vi sin( --)J).

As 0 approaches 0, this value becomes unbounded. We can exclude unstable bases
if we set limits on the allowable range of values for 0, in particular, we can restrict
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Figure 13:
Graph of selectivity A for c = 3 as the basis vector length d varies.

our attention to bases with the property that

0 0 <€<ir - 00 or r+ Oo < 0 < 27r- Oo.

By applying standard minimization methods, one finds that if the maximum dis-
tance between any two model points is M and the minimum distance is m, then
the maximum value for p is given by

M 1
p, M< 1 (20)

P m sin (20
2

To evaluate the selectivity, we also need to know d, the length of the basis
vector, which can vary from 1 to r. Given a specific value for d, we can compute
the selectivity. To get a sense of the variation of IL as d changes, IL is plotted as a
function of d in Figure 13, for E = 3.

In general, d will take on a variety of values, as the choice of basis points in the
image is varied. To get an estimate for the expected degree of selectivity, we perform
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Case Measured Predicted Approximation
S= 1 .000116 .000117 .000118

c = 3 .001146 .001052 .001064
c = 5 .003142 .002911 .002955

Table 1:
Table comparing simulated and predicted selectivities. In all cases, the ratio of minimum to maxi-

mum separation of points was 10. The predicted column uses the full expression for 71 from equation
19, while the approximation column uses the approximation given by equation 23. The measured
column reports actual observed selectivities obtained by generating sets of model and image fea-
tures at random, and counting the number of matches, within error, for a pairing of an image and

model basis.

the following analysis. We assume, for simplicity, that the origin of the image basis
is at the center of the image. The second point used to establish the basis vector can
in principle lie anywhere in the image, with equal probability. Hence the probability
distribution for d is roughly (ignoring corner effects in the image)

2d7?2'

We could explicitly integrate equation 19 with respect to this distribution for d
to obtain an expected selectivity. This is messy, and instead we pursue two other
options.

First, we can integrate this numerically for a set of examples, shown in Table 1
under the column marked predicted, which lists values for p as a function of noise
in the image (with an image dimension of 2r = 500). The value of p. was set
using 0o = 7r/16, and a ratio of minimum to maximum model point separation
of M/m = 10. It should be noted that varying Oo over the range 7r/8 to 7r/32
produced results very similar to those reported in the table. As one would expect,
the probability of a consistent match increases (selectivity decreases) with increasing
error in the measurements. Thus we can see that for ranges of parameters that one
would find in many recognition situations, a considerable fraction of the space of
possible a and 0 values are consistent with a given feature and basis.

To test the validity of our formal development, we ran a series of simulations on
randomly chosen features to test the selectivity values u predicted by equation (19).
We generated sets of model and image features at random, chose bases for each at
random, then checked empirically the probability that a model point, rewritten in
the image basis, lay within the associated error disc of an image point. We chose
to consider only cases in which the error disc fits entirely within the bounds of the
image, since we know that our predictions are underestimates for the other cases.
Table 1 summarizes the results, under the column marked measured.

Second, we can approximate the selectivity expression. By applying power series
expansions for the different terms in equations 16. 17, 32 and 34, and keeping only
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first and second order terms, we arrive at

k~re2 [17 r rd2]
/• •2 •+1og• • .(21)

Finding the expected value for equation 21 over the distribution for d, where d can
range from some minimum value f to r, in turn yields the following approximation
for the expected selectivity:

_7;t 2kirE 2 [1 2(9 o (22)•r2_2 --1 r2 24• fl t 3r

For the case of t < r, this reduces to

77 r ;- k r yC2-,_()l1ogr (23)

and this predicts values in close agreement with those recorded in Table 1, as shown
in the column marked approximation.

Note that the selectivity is clearly not linear in sensor error. For a fixed size
image, increasing the error c by some amount should decrease the selectivity (in-
crease the probability) by at least a quadratic effect (perhaps more since there are
higher order terms). This is reflected in Table 1, where increasing c from 1 to 3
increases the predicted probability by roughly a factor of 9, and increasing from 1
to 5 increases the predicted probability by roughly a factor of 25. This expected
value of the selectivity allows us to analyze the probability that a match will be
reported at random by some recognition method that uses affine transformations.
The selectivity, 17, in essence reflects the power of a given quadruple of features to
distinguish a particular model. Now we consider the manner in which information
from multiple quadruples is combined. This analysis differs slightly for different
recognition methods. First we examine the geometric hashing method and then the
alignment method.

4 The Geometric Hashing Method

We are now ready to investigate the probability that the geometric hashing method
will randomly report a match of a model to an image, under an affine transformation
from the model to the image [4, 16, 17, 18, 19, 221. The geometric hashing method
is based on the idea of representing an object by storing redundant transformation-
invariant information about it in a hash table. At recognition time, similar invari-
ants are computed from the sensory data, and are used to index into the hash table
to find possible instances of the model. If enough of the sensor invariants score a
hit when hashing against the model table, one has in principle found an instance of
the model in the sensory data.
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The formal description of the geometric hashing algorithm is for noise-free data.
A number of variations of the basic geometric method have been presented, and have
been illustrated using data from real images [16, 17, 18, 19, 22] with associated sensor
noise. The experimental results reported in these papers, however, have been limited
to relatively simple scenes. A modified version of the geometric hashing method
has been reported in [4], where uncertainty in the image measurements is explicitly
taken into account using a probabilistic model. This method addresses the issue of
inexact sensor data, however it leaves open the question of formal characterizations
of the expected performance of the method in the presence of noise and clutter.

Any hashing function should include an analysis of the conditions under which
collisions will occur; when will different data items be mapped to the same key? In
this section we provide such an analysis for the affine hashing method. This analysis
is particularly crucial in the case of the affine hashing method, because the hash table
is also implicitly used to allow for small amounts of uncertainty in the sensor data.
That is, the method relies on the fact that 'similar' sensor values will be hashed to
the same location. As we have seen briefly above, however, it is not possible to use
any simple tessellation of the a-3-space in order to correctly account for uncertainty.
In particular, the range of (a,f0) values consistent with a given point depends on
the actual configuration of the model and image points. The configuration of the
image points is not available at the time that the hash table is constructed, and
thus a strictly correct table cannot be built. In practice, implementations of the
method use approximations that simply tessellate the space uniformly and ignore
the effects that this has both on false matches and false rejections.

4.1 Details of the Geometric Hashing Method

As with most model-based recognition methods, it is assumed that an object can be
represented by a collection of features, or interest points. A 'match' of a model to a
scene consists of a mapping of a subset of the model features to a subset of the image
features, such that applying a geometric transformation of some particular type to
all of the model features will make each of them coincident with their corresponding
image feature. The geometric hashing approach has been used with various types of
transformations, however here we restrict ourselves to the case of a two-dimensional
affine transformation.

The geometric hashing method consists of two basic stages: (i) the construction
of a model hash table and (ii) the matching of the models to an image. The hash
table is used to store a redundant, transformation-invariant representation of each
object. This representation makes use of the fact that a triple of model points
defines an invariant coordinate frame, or basis. An affine-invariant model of an
object is formed by expressing the locations of its feature points in terms of each
such transformation-invariant coordinate irame (or basis), and using the resulting
coordinates as indices for storing the corresponding basis in a hash table.

A key assumption underlying the method is what we will term the affine hashing
hypothesis, which is that a point represented in terms of some basis will produce
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the same coordinate values under any valid transformation of that point and basis.
This can be stated more formally as follows.

Assumption 1 Consider the four (ordered) 'model'points ml, M 2 , M 3 , and M 4 ,

and the affine invariant coordinates (a,,3) defined by m 4 - mt = Q(m 2 - MO) +
O(m3 - ml). Let these four points undergo a transformation, T, and denote the
resulting points by mý = Tmi, i= 1,. ,4. It is assumed to be the case that m'-
ml a(m2 - MID + O•(m' - M'D.

When the transformation T is an affine transformation, then this assumption
is true [16, 17, 18, 19, 22]. However when T is a transformation mapping a model
to its image using a camera or other sensing device, there will generally be errors
in the locations of the image points. In these cases the affine hashing assumption
no longer holds. In the previous sections we have analyzed the extent to which
uncertainty (or error) in the locations of image points impacts this assumption, and
hence affects the geometric hashing method. In the following section we use this
analysis to determine the probability that the affine hashing method will falsely
report a match when none is present.

Before analyzing the performance of the method in the presence of sensor un-
certainty, we describe the method assuming that there is no sensor error and no
numerical roundoff error.

For each model, the following steps are used to enter it into the hash table:

1. Choose an ordered set of three model points MI, M 2 , m 3 as a basis, formed
by an origin

0 = mI

and a pair of axes

U = m 2 -- 1

V = M3 - ml.

2. For each additional model point mni, rewrite the coordinates of the vector
mi - o in the affine basis defined by the axes u,v. In other words, find the
coordinates a, 03 such that

mi - o = au + Ov.

3. Hash into a table using the indices (a,/3), and store at that point in the table
the basis triple (o, u, v).

4. Repeat this process for all possible choices of model bases (that is for all
ordered triples of model points). This results in a table indexed by affine-
invariant coordinates. Any pair of a and /3 values can be used to retrieve
those model bases (if any) for which some model point mi has the affine-
invariant coordinates (a,/3). In particular, if (a',,3') are affine coordinates for
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an image point, written in terms of some image basis, then (a',/3') = (a,/3) if
and only if there is a legal transformation of the four model points (the three
basis points together with the point represented by the affine coordinates)
that maps them onto the four associated image points.

At recognition time, the hash table is used to determine which models are present
in the image. The idea is that if we select a triple of image points that corresponds
to the model and compute the coordinates for other image features in terms of this
basis, the hash table will contain corresponding entries because the model is stored
in the table in terms of every possible basis (and the representation is invariant
under any affine transformation). Thus, if we have selected an image basis that
corresponds to the model, all the remaining image points that correspond to the
model will produce (a,,3) pairs that specify the same model basis in the hash table.

The exact processing at recognition time is as follows:

1. Choose a set of three sensor points Sl,S2,s3 to form a basis, formed by an
origin

0 =S

and a pair of axes

U = s 2 -Sl

V = s3 -Sl.

2. For each additional sensor point si, rewrite the coordinates of the vector si -
O in the affine basis defined by the axes U,V. In other words, find the
coordinates a',,3' such that

si - 0 = a'U + 3'V.

3. Index into the hash table using the indices (a',3'), and retrieve the set of
entries at that point in the table. Any bases stored at that location are
possible candidate matches. Each time a given basis is retrieved from the
table, a corresponding counter is incremented in a histogram. This step is
repeated for all additional sensor points.

4. Once all the sensor points have been hashed, the histogram contains votes for
those model bases that could correspond to the current sensor basis, (0, U, V).
If the peak in the histogram for a given model basis, (o, u, v), is sufficiently
high, then this basis is selected as a possible match. The entire model can then
be transformed into the image coordinates and compared to verify that the
hypothesized transformation is correct. The transformation from the model
to the image coordinate frame can be computed from the corresponding model
and image bases.

26



5. The entire operation is repeated for all possible bases (that is all triples of
image points are considered until a match is found). On each iteration, the
histogram counts are cleared.

Since the description of the algorithm is for perfect data, issues concerning the
ellipse of uncertainty associated with a point are not addressed. In extending the
method to deal with uncertainty, Step 3 must be modified, so that (a',/3') are
used to compute the ellipse of feasible values, and for any bucket in the hash table
that intersects this ellipse, the stored entries are retrieve and used to increment
the histogram. Presumably only one vote is cast for a model basis retrieved in
this manner, even if it appears in more than one bucket overlapping the ellipse of
uncertainty. Note, however, that because of these regions of uncertainty, a single
model feature may be retrieved by more than one image feature, an issue to which
we will return shortly.

5 The Sensitivity of Geometric Hashing in the Pres-
ence of Noise

Given that we can estimate ranges of values for the affine parameters a,/3, we can
turn to the use of such ranges in examining the sensitivity of the geometric hashing
method. The main question of concern is whether a random collection of sensor
points can masquerade as a correct interpretation. That is, under what conditions
is it likely that some random set of sensor points, rewritten with respect to some
arbitrarily chosen sensor basis, will index an incorrect model basis enough times to
give a histogram vote as large as the correct interpretation? We can investigate the
probability of such false positive identifications with the following plan of action.
(Recall that we analyze the case in which each point is correctly represented by
an ellipse with a given uncertainty value, whereas the actual implementations of
geometric hashing do not use this correct expression.)

1. We use the analysis from Section 4 to estimate the probability that a given
quadruple of image points will match a given quadruple of model points, given
bounded uncertainty of radius c in the sensor data. We denote this by the
selectivity 1I as given by equation (19), or its approximation in equation (23).

2. Each model basis is stored in the hash table according to the m - 3 remaining
model features, and thus there are m-3 points that index to each model basis.
We are interested in the probability that a randomly chosen image point and
image basis will hash to a location in the a-/0-space that is consistent with
a given model basis. This is just the probability that for at least one of the
m - 3 model points, the image point lies within the error disc associated
with the model point, rewritten in terms of the image basis. If we assume
independently distributed features, then this is just

p = 1 _ (1 _ ;)m- 3 . (24)
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This follows from the fact that the probability that a particular model point
is not consistent with a given pair of indices is (1 - 7) and by independence,
the probability that all m - 3 points are not consistent with this pair of
indices is (1 - 17)m-3. If this probability is reasonably large, then there is a
high probability that we will see a large number of votes for a given basis
at random. Note that in doing this, we are actually underestimating the
probability of a vote. We should really evaluate the expected value of

1 - (1 - p)--3

rather than just evaluating the expected value for j7 and using that directly
in computing p. Doing so leads to a more complicated expression that gives
values slightly larger than those obtained using the above expression. For
simplicity, we use the expression in equation (24).

3. For each image basis, all s - 3 remaining image points (other than the 3 points
used to establish the basis) are used to form an index to lookup corresponding
bases into the table. If the probability of being consistent with a given basis
is p, then ps should be much smaller than m if we are to avoid a false positive.
More precisely, if the probability that a single hash lookup will cast a vote for
a particular model basis is p, then the probability of exactly k votes out of
s- 3 is

qk= - pk( 1 - p)3-k. (25)

Further, the probability of a false positive identification of size at least k is

k-1

Wk = 1 - qi.
i=0

Note that this is the probability of a false positive for a particular sensor basis
and a particular model basis.

4. Since the hash table is built by considering all possible model bases, there are
(') different b.,ses entered into the table. The probability of a false positive
identification for a given sensor basis with respect to one model basis is wk.
Hence, the probability of a false positive for this given sensor basis with respect
to any model basis is

ek =1-(1-wk)(73). (26)

5.1 Testing the model

To check the correctness of our model, we ran a series of experiments based on
equation 25. In particular, we generated random sets of model and image features,
with 25 model features and with 25,50, 100 and 200 image features. We used our
analysis to generate a predicted distribution for the probability of a false positive
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identification of size k. In each case, the uncertainty was set at c = 3, and the
cutoff on angular stability was 4Oo = -. These values, together with data about the
minimum and maximum separation of model points were used to generate values
for M, which were typically on the order of 0.0011.

For comparison, we also ran some simulations on these data sets, by selecting
bases for both the model and the image at random, and determining the size of
vote associated with that pairing of bases. In particular, for each additional model
point, wo computed the affine coordinates relative to the chosen basis, then used
those coordinates to determine the nominal transformed position in the image. We
also used those coordinates to determine the radius of the associated error disc.
For each image point, we checked to see if at least one of the error discs about a
transformed model point contained the image point. If so, we incremented the vote
for this pairing of bases. This trial was repeated 1000 times. We excluded choices
of model bases for which more than half the transformed points would lie outside
the extent of the image. The results of these trials are shown in Figures (14) and
(15).

One can see that the cases are in good agreement. In fact, our model tends to
overestimate the probability of small false positives, and underestimate the proba-
bility of large false positives, so our results will tend to be conservative.

Next, we turn to the question of what ek looks like (recall that this is the
probability that any sensor basis will have at least one matching model basis). As
an illustration, we graph the probability of a false positive based on equation (26).
In particular, we use a selectivity based on c = 3, 40 = & obtained from Table 1,
and plot the value of ek for an object with 25 model features, for different values of k
and a given number of sensor features s. This is graphed in Figure (16). (A similar
set of graphs, for m = 38 and m = 50, are also shown in Figure (16).) The process
was repeated for different values for the number of sensor features s, generating
the family of graphs in the figure. In Figure (17) we graph the same probability
of a false positive based on equation (26), here using a selectivity corresponding to
errors of c = 5.

In Figure (16) the correct interpretation cannot account for more than 22,35
and 47 model features, respectively, because three of the m features always match
(and we used values of m = 25,38,50). Since in general the correct interpretation is
likely to have fewer than this number of features due to occlusion, one can see that
the probability of a false positive is "acceptable" only for cases with a moderate
number of sensor featutes, and limited error. If the error bound is C = 3, then
one can tolerate ratios of sensory data to model features as large as 10 : 1 while
expecting with probability nearly 0 to have a false positive peak in the histogram
as big as the model itself, for each choice of sensor basis. If we expect half of the
model to be occluded then if the ratio of sensory data to model features is on the
order of 5 : 1, we expect with probability nearly 1 to have a false positive peak in
the histogram at least as big, but if the ratio is 3 : 1, the probability of a false peak
is nearly 0.
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Figure 14:

Comparison of predicted and measured probabilities of false positives. Each graph compares the

probability of a false peak of size k observed at random. The cases are for m = 25 and s -= 25

and 50, from top to bottom. In each case, c = 3, and Oo = M. The graph drawn with triangles

indicates the predicted probability, while the graph drawn with squares indicates the observed

empirical probabilities.
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Figure 15:
Comparison of predicted and measured probabilities of false positives. Each graph compares the

probability of a false peak of size k observed at random. The cases are for m = 25 and s = 100

and 200, from top to bottom. In each case, c = 3, and O0 = -1. The graph drawn with triangles

0.16

indicates the predicted probability, while the graph drawn with squares indicates the observed

empirical probabilities.
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When we consider errors of E = 5 (Figure 17), however, much less clutter can be
tolerated. Now only ratios of sensor data to model features on the order of 4 : 1 can
be tolerated while ensuring that the probability of a false peak as big as the model
is nearly 0, and if the ratio is 6 : 1, this probability goes to nearly 1. If half of the
model is occluded, then the corresponding ratios reduce to 1 : 1 and 2 : 1.

In Figure (18), we show the false positive rate as the error rate changes. Each
figure plots the false positive rate, for model features m = 25, and for sensor features
varying from s = 25 to s = 200 by increments of 25. The individual plots are for
varying numbers of sensory features, and the process is repeated for changes in the
bound on the sensor error, given a fixed threshold on angle of 40 = ir/16. One can
see that if the error is very small, the method performs well, i.e. the probability of a
false positive rapidly drops to zero even for small numbers of model features. As the
sensor error increases, however, the probability of a false positive rapidly increases,
as can be seen by comparing different families of plots in Figure (18). Note that
the best possible correct solution would be for k = 22.

To compare our analysis with real data, we have performed the following test.
Lamdan et al. [16] report data for the number of correct and incorrect votes for a
model basis in the histogram, as a function of the size of the vote. This is done for
an image with 28 features, and a model with 21 features. Using this data, we can
estimate the probability of a false positive, for this image and model, as a function
of the size of the vote. This is graphed in Figure (19), (the triangles). We can also
use equation (26) to predict this probability. We do this for four different values
for the selectivity factor, as indicated. One can see that while the graphs do not
exactly match, due to the assumptions of the analysis, the predicted probability of
a false positive is reasonably close to that observed in the real data case.

In part the results that we describe above are overly pessimistic, based on the
error model of E-bounded sensory uncertainty. In essence this model assumes that
the location of a feature within this error disc has a uniform probability for all posi-
tions within the disc. Perhaps a more realistic model would be to let the probability
drop off with distance from the center of the disc, e.g. using a normal distribution.
This is similar to the error model used in [4], who use a probabilistic formulation of
positional uncertainty. We can model this effect with the following. Assume that
while the overall bound on positional error is E, with a probability v, the deviation of
the feature's position is c'. Then if m is the number of model features, the expected
size of the correct interpretation, given this error model, is

Vom (27)

where o is the fraction of the model expected to be occluded by other objects. For
example, suppose m = 25, o = .75 and c = 5. Then the probability of a false positive
of size 19 (the correct interpretation) is one, if s = 25 (see Figure 18c). On the other
hand, if we consider, say, v = .9 for c' = 1, then we move from Figure 18c to Figure
18a. Now the expected size of the correct interpretation is 17, but we can tolerate
sensor clutter as high as s = 150 and still have the probability of a false positive be
vanishingly small.
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Figure 16:
Graph of probability of false positives. Vertical axis is probability of false positive of size k,

horizontal axis is k. Each graph represents a different number of sensor features, starting with

s = 25 for the left most graph, and increasing by increments of 25. In the top case, the model

consisted of 25 features, in the middle case, 38 features, and in the bottom case, 50 features.

Selectivity was based on c = 3 error.
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Figure 17:
Graph of probability of false positives. Vertical axis is probability of false positive of size k,

horizontal axis is k. Each graph represents a different number of sensor features, starting with

s - 25 for the left most graph, and increasing by increments of 25. In the top case, the model

consisted of 25 features, in the middle case, 38 features, and in the bottom case, 50 features.

Selectivity was based on e -- 5 error.
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Figure 18:

Graph of probability of false positives. Vertical axis is probability of false positive of size k,

horizontal axis is k. Each graph represents a different number of sensor features, starting with

s -- 25 for the left most graph, and increasing by increments of 25. In all cases, the model consisted

of 25 features. In the top case, the sensor error was = -- 1, in the middle case, • -- 3, and in the

bottom case, c 5.
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Figure 19:
Graph of probability of false positives - real data. Vertical axis is probability of false positive of
size k, horizontal axis is k. The graph with the triangles is based on the data reported by Lamdan

et al. for an image with s = 28 and a model with m = 21. The other three graphs (squares) are
the predicted probability of a false positive, for selectivities based on c = 3, 5, 7, and 9 from left to

right respectively.

In practice, the implementations of geometric hashing are using such an error
model. By tesselating the hash table they are approximating an error region of
some size (this is not exactly correct, since a square, or even circular, region in
a-fl-space maps into an odd shaped region in image space). The size of this region
is generally smaller than the actual bound on sensor error. This may cause the best
interpretation to be smaller than one could achieve if one exactly modeled the error
effects, but at the same time, it reduces the probability of seeing false positives.

6 The Sensitivity of Alignment in the Presence of Noise

A second object recognition method based on affine transformations is the align-
ment method [2, 12, 13]. The initial version of the affine-invariant alignment
method was restricted to planar objects [12], whereas later versions operate on
three-dimensional models (unlike affine hashing which uses two-dimensional mod-
els). The two-dimensional version of the alignment method bears some similarity
to the geometric hashing approach, but differs in several fundamental aspects.

The basic alignment method is summarized as follows:

"* Choose an ordered triple of image features and an ordered triple of model
features, and hypothesize that these are in correspondence.

"* Use this correspondence to compute an affine transformation mapping the
model into the image.

"* Apply this transformation to all of the remaining model features, thereby
mapping them into the image.
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e Search over an appropriate neighborhood about each projected model feature
for a matching image feature, and count the total number of matched features.

This operation is in principle repeated for each ordered triple of model and image
features, although it may be terminated after one or more matches are found, or
after a certain number of triples are tried without finding a match.

The two-dimensional affine transformation, A, consisting of a linear transforma-

tion L and a translation b, is computed from three pairs of model and image points
(a,,ai), (bm., bi) and (cm, c), using the following procedure:

a) Translate the model so that the point am is at the origin.

b) Define the translation vector b = -ai, and translate the image points so that
thr new ai is at the origin, the new bi is at bi - ai and the new ci is at ci - ai.

c) Solve for the linear transformation

L =(111 112)
S(121 122

given by the two pairs of equations in two unknowns

Lbm =b,

and
Lem = Ci.

In a manner very similar to that used in the previous section, we can analyze
the sensitivity of the alignment method. As before, the main question of concern
is whether a random collection of sensor points can masquerade as a correct in-
terpretation. In this case, we can investigate the probability of such false positive
identifications with the following plan of action.

1. As before, the selectivity of a given quadruple of points is given by the ex-
pression for I! in equation (19).

2. Since each model point is projected into the image, the probability that a

given model point matches at least one image point is

p',= 1 -_(1 -_ s-3.

This follows from the fact that the probability that a particular model point

is not consistent with a particular image point is (1 -j7) and by independence,
the probability that all s - 3 points are not consistent with this model point
is (1 - •)s-3.
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3. The process is repeated for each model point, so the probability of exactly k
of them having a match is

i )()k(l -k (28)

Further, the probability of a false positive identification of size at least k is

k-i

i=0

Note that this is the probability of a false positive for a particular sensor basis
and a particular model basis.

4. This process can be repeated for all choices of model bases, so the probability
of a false positive identification for a given sensor basis with respect to any
model basis is

e =1-(1W-u )(3). (29)

6.1 Testing the model

To check the correctness of our model, we have run a series of experiments based on
equation 28. In particular, we have used our analysis to generate a distribution for
the probability of a false positive identification of size k, given c = 3 and 00 -= ,
and using a model with 25 features and images with 25,50,100 and 200 features.
For comparison, we also generated a set of model and image points of the same size,
selected bases for each at random, and determined the size of vote associated with
that pairing of bases. In particular, for each additional model point, we computed
the affine coordinates relative to the chosen basis, then used those coordinates to
determine the nominal position of an associated image point, together with a disc of
uncertainty about that point. We simply checked to see if at least one image point
lay within a model point's error disc. If so, we incremented the vote for this pairing
of bases. This trial was repeated 1000 times. The results are shown in Figures (20)
and (21).

One can see that the cases are in good agreement. In fact, our model tends to
overestimate the probability of small false positives, and underestimate the proba-
bility of large false positives, so our results will tend to be conservative.

Next, we turn to the question of what e' looks like. As an illustration, we
graph in Figure (22) the probability of a false positive based on equation (29). In
particular, we use a selectivity based on c = 3, obtained from Table 1, and plot
the value of e' for an object with 25 model features, for different values of k and a
given number of sensor features s. This is graphed in Figure (22). (A similar set
of graphs, for m = 38 and m = 50, are also shown in Figure (22).) The process
was repeated for different values for the number of sensor features s, generating the
family of graphs in the figure.

38



0 .8 .......................................................... .....-.

0.6J

0.4'

0.2"

0 5 Fgr 20: 2

Figure 20:

Comparison of predicted and measured probabilities of false positives. Each graph compares the

probability of a false peak of size k observed at random. The cases are for m = 25 and s = 25 and

50, from top to bottom. In each case, c = 3.

39



0 °• . .. ... ... ... ... ... .. .............. .................................................

0 .6 ......... ..................... ............ ........................ .................

0 .2 . .. ..... .... ......................................................... ......................

0 .4 . ...................... : . ................... •. . . . ............. "......................

0.4 . .... .. .

0.l

0 5 10 is 20

Figure 21:
Comparison of predicted and measured probabilities of false positives. Each graph compares the

probability of a false peak of size k observed at random. The cases are for m = 25 and s = 100

and 200, from top to bottom. In each case, c = 3.
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In Figure (23) we graph the same probability of a false positive based on equation
(29), here using a selectivity corresponding to errors of c = 5.

These results can be compared to the graphs for the geometric hashing method.
Several observations are in order. First, the false positive curves are generally
more favorable in the alignment case. That is, the probability of a false positive is
considerably smaller for alignment than for the comparable case of hashing. This

is mostly due to the fact that hashing is based on testing all image points to see
if there is a matching model point, while alignment uses the model points to look
for matching image points. Since there are generally many more image points than
model points, alignment is likely to have a lower rate of false positives. If geometric
hashing were to keep track of which model points have been matched to an image
point, a comparable performance would be expected. Second, the false positive
curves for the alignment approach an asymptotic limit of a step function, with
cutoff at m, while geometric hashing, in the form considered here, tends to shift
the curves linearly with increasing s. Overall, one concludes that alignment can
tolerate considerably more clutter in the scene than hashing.

In Figure (24), we show the false positive rate, as the error rate changes. Each
figure plots the false positive rate, for model features m = 25, and for sensor features
varying from s = 25 to s = 200 by increments of 25. The individual plots are for
varying numbers of sensory features, and the process is repeated for changes in the
bound on the sensor error, given a fixed threshold on angle of 40 = 7r/16. One can
see that if the error is very small, the method performs well, i.e. the probability of a
false positive rapidly drops to zero even for small numbers of unodel features. As the
sensor error increases, however, the probability of a false positive rapidly increases,
as can be seen by comparing different families of plots in Figure (24). Note that
the best possible correct solution would be for k = 22.

7 Relation to Previous Work

The first analysis of the effects of sensor uncertainty on affine matching was done in
[11]. At that time, we did not have the precise expression for error bounds given in
Proposition 1, but we were able to produce approximations to the range of values
for the affine coordinates (a,,3). We used these in numerical simulations, showing
empirically that the range of values associated with a pair of affine coordinates un-
der this uncertainty model increased with increasing E, but also with the parameters
associated with the basis vectors. Although the article only illustrated average se-
lectivity values, obtained by averaging the selectivity ranges over all possible choices
of points, our data supported the idea that selectivity also depended on the specific

point, i.e. on the actual value of (a,,3). The conclusion drawn in that work was that
the verification stage of the recognition process would be critical for methods like
geometric hashing, since a large number of possible pairings of model and image
basis would be hypothesized. We also concluded that in order to keep the com-
binatorics manageable, geometric hashing, like generalized Hough transforms [9],
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Figure 22:
Graph of probability of false positives. Vertical axis is probability of false positive of size k,

horizontal axis is k. Each graph represents a different number of sensor features, starting with

s = 25 for the left most graph, and increasing by increments of 25. In the top case, the model

consisted of 25 features, in the middle case, 38 features, and in the bottom case, 50 features.

Selectivity was based on c = 3 error.
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Figure 23:
Graph of probability of false positives. Vertical axis is probability of false positive of size k,

horizontal axis is k. Each graph represents a different number of sensor features, starting with

a = 25 for the left most graph, and increasing by increments of 25. In the top case, the model

consisted of 25 features, in the middle case, 38 features, and in the bottom case, 50 features.

Selectivity was based on c = 5 error.
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Figure 24:

Graph of probability of false positives. Vertical axis is probability of false positive of size k,
horizontal axis is k. Each graph represents a different number of sensor features, starting with

*s --- 25 for the left most graph, and increasing by increments of 25. In all cases, the model consisted
of 25 features. In the top case, the sensor error was c = 1, in the middle case, c = 3, and in the

bottom case, c = S.
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and tree search methods [7, 8], should be connected to a good grouping or selection
method.

In a more recent analysis of the affine hashing method, Lamdan & Wolfson [20]
(see also [22]) discuss the error properties of affine transformations under the same
error model. Their approach is to consider the equation

Ax = d

where the columns of matrix A are defined by m2 - m, and m 3 - m, and where
d = p - mi, with p representing the point of interest. The vector x defines the
affine coordinates of p and is obtained by inverting the matrix equation. To account
for error, Lamdan & Wolfson consider

(A + bA)(x + bx) = d + 6d.

They claim that the values of the entries of bA and tbd are bounded by c, and use
this in their analysis. In fact, because these entries are defined as the difference of
two uncertain vectors, the error bounds on the values should be 2c which suggests
that the examples given in [20] are actually for cases in which the sensor error is
half of that reported.

Based on this equation, they use results from numerical analysis to bound the
magnitude of the uncertainty in the affine coordinates, using:

116x-- < K(A) [LAl + 2iI 1 +0(,2) (30)ll xll - I A II Ijd ljj

where
K(A) = -AII IIA-'II

is the condition number of the matrix A.
This result does not define the actual range of values, nor the shape of the

region of uncertain values associated with an affine coordinate pair, but it does
bound the magnitude of the uncertainty, in a manner roughly consistent with the
results presented in [11]. Note that the magnitude of the uncertainty depends on
the magnitude of the actual affine coordinates l[xii, as well as on the magnitude of
the point UIdl and properties of the affine basis IAil. Using numerical simulations
(modulo the incorrect values for c) Lamdan & Wolfson reach essentially the same
conclusion as that of [11], namely that except in simple cases, geometric hashing
without verification will produce far too many false hypotheses to be used as a pure
recognition technique. They note, by using methods from [9], that in the case of
rigid motions and simple scenes, verification may not be needed. They suggest that
geometric hashing does form a useful preprocessing stage for subsequent verification,
by reducing the number of cases that verification must consider.
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8 Summary

The computation of an affine-invariant representation in terms of a coordinate frame
(Mi, M 2 , M 3 ) has been used in the alignment [12, 13] and geometric hashing [16, 17,
18, 19, 22] model-based recognition methods. These recognition methods were both
developed assuming no uncertainty in the sensory data, and then various heuristics
were used to allow for error in the locations of sensed points. In this paper we have
formally examined the effect of sensory uncertainty on these recognition methods.
This analysis involves considering both the Euclidean plane used by the alignment
method, and the space of affine-invariant (a,,3) coordinates used by the geometric
hashing method. Our analysis models each sensor point in terms a disc of possible
locations, where the size of this disc is bounded by an uncertainty factor, C.

Under the bounded uncertainty error model, in the Euclidean space the set of
possible values for a given point x and a basis (MI, M 2 , m3) forms a disc whose
radius is bounded by r = kc(1 + Ial + I1,3), where 1 < k < 2. That is, assuming
that each image point has a sensing uncertainty of magnitude E, the range of im-
age locations that are consistent with x forms a circular region. In the a-6-space,
the set of possible values of the affine coordinates of a point x in terms of a ba-
sis (MI, M 2 , m3) forms an ellipse (except in degenerate cases). The area, center
and orientation of this ellipse are given by somewhat complicated expressions that
depend on the actual configuration of the basis points.

The most important consequence of our analysis is the fact that the set of possi-
ble values in the a-/0-plane cannot be computed independent of the actual locations
of the model or the image basis points. This means that the table constructed by
the geometric hashing method can only approximate the correct values, because
the locations of the image points are not known at the time that the table is con-
structed. We further find that the geometric hashing method works well when there
is little noise in the measurements, and when the amount of spurious data in the
scene is limited. When the noise levels are even moderate, however, we find that
the method degrades considerably, and in particular, that the probability of a false
positive recognition becomes significant. This probability also increases rapidly as
a function of the number of sensory features. This suggests that the method will
require that a substantial number of hypothesized matches be ruled out by some
subsequent verification stage. In analyzing the alignment method, we find that the
probability of a false match is substantially lower than for geometric hashing, largely
because the alignment method explicitly keeps track of which model features have
been matched to image features.

46



A. Determining the Area of the Consistent Region

An approximation to the area in the third case, using the underestimate of Figure 10
with p -pd leads to

A3 = k C2 22rE2(1 + p) 2p-2 dp

+ j k(r - pd) /402(1 + p) 2 - (r - pd)2p- 2 dp

+ f k2(,1 + p)(r - pd)p- 2 dp

=27rc 
2 k [p+21ogp- 1] I2P P=C

( d) +bp+cp 2

+ ( - ad) -I arcsin 2av+-bp

T/cr- )d --I -arcsin 2cp+ b] C2

+2k -r + (r - d)logp - d] (31)

where

a = 4E2 - r 2

b = 8c2 + 2dr

c = 4c2 - d2

A = 4ac-b 2.

Here c2  min {Pm?, }, so that we integrate out until either we hit the maximum
value for p, or the center of the disc reaches the edge of the image. Substitution,
under the condition that Pm > c2 yields

[dr2 + 2C2 
- T d) / 2c + -

r T -4c r-2I)
A3  +2C (d=r 2E Iirci -

+ dr+2 2  r (arcsin

+c(r -d) log r-1ogd-2

2c(d + r) (3E(d - r) - rd + 8c 2)
+ (r - 2)(d + 2c)

+27rE 2 [c(r + d)r2 + d2 + 2c(d - r) + log - 2-JJ (32)
dr(d + 24)(r7-2) g -- J (
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An approximation to the area in the fourth case, using the approximation shown
in Figure 11 yields:

A4 = = 2k(2E(l+p)-pd+r) /4C2(l+p)2-(r-pd)2p-2dp

= k [( 2 ,E-d -E ') ýa+ bp +cp 2

+ (b( 2 . +r)+a(2Ed) 1 arcsin 2a+bp

- (c(2c + r) +(2-d)) b (arcsin d2cp ] -C (33)

where c3 = min{p,, •-.. }.

Substitution, under the condition that p.. > C3 yields

A4 = 2k [2c(d + r)dr + E(d - r)
[E~ dr

8 0 + dr2 + c(r- 2 c)(d - r) ( 7 2 C )
+ --- ar}i -

S --d~2• -4( ( ( + arcsin (34)
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